
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2016

1 Instructor: Daniel Llamocca

Notes - Unit 1

INTRODUCTION TO LOGIC CIRCUITS

BOOLEAN ALGEBRA
 This is the foundation for designing and analyzing digital systems. It deals with the case where variables assume only one

of two values: TRUE (usually represented by the symbol '1'), and FALSE (usually represented by the symbol '0'). This is also
called Two-valued Boolean Algebra or Switching Algebra.

 A circuit consisting of switches can be represented in terms of Boolean algebraic equations. The equations can be then
manipulated into the form representing the simplest circuit. The circuit may then be immediately drawn from the equations.
This powerful method first appeared in: “A symbolic Analysis of Relay and Switching Circuits”, Claude E. Shannon,
Transactions of the AIEE, vol. 57, no. 12, Dec. 1938, pp. 713-721.

BASIC OPERATIONS
 X and Y are Boolean variables. Boolean variables are used to represent the inputs or outputs of a digital circuit.

OPERATION BOOLEAN EXPRESSION OPERATION

NOT 𝑋′(𝑜𝑟 𝑋̅) Logical negation

AND 𝑋. 𝑌 Logical conjunction of two statements

OR 𝑋 + 𝑌 Logical disjunction of two statements

TRUTH TABLES AND LOGIC GATES
 Truth Table: A tabular listing of function values for all possible combinations of values on its input arguments. If there are

𝑛 inputs, there are 2𝑛 possible combinations.

X F = X'

0 1

1 0

X Y F = X.Y

0 0 0

0 1 0

1 0 0

1 1 1

X Y F = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

 Logic Gates: Hardware components that produce a logic 1 or logic 0 depending on the state of inputs. They are used to

implement Boolean functions.
 Logic Gates (AND, OR) can have multiple inputs:

AXIOMS

0.0 = 0 1.1 = 1 0.1 = 1.0 = 0 0̅ = 1

1+1=1 0+0 = 0 1+0 = 0+1 = 1 1̅ = 0

F = X'X

F = X+Y
X

Y

F = X.Y
X

Y

F = X.Y.Z... F = X+Y+Z+...

X

Y

X

Y

Z ...

Z ...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2016

2 Instructor: Daniel Llamocca

THEOREMS

Variable dominant rule
𝑋. 1 = 𝑋
𝑋 + 0 = 𝑋

Commutative rule
𝑋. 𝑌 = 𝑌. 𝑋
𝑋 + 𝑌 = 𝑌 + 𝑋

Complement rule
𝑋. 𝑋̅ = 0
𝑋 + 𝑋̅ = 1

Idempotency
𝑋. 𝑋 = 𝑋
𝑋 + 𝑋 = 𝑋

Identity Element
𝑋. 0 = 0
𝑋 + 1 = 1

Double negation 𝑋̿ = 𝑋

Associative rule
𝑋. (𝑌. 𝑍) = (𝑋. 𝑌). 𝑍
𝑋 + (𝑌 + 𝑍) = (𝑋 + 𝑌) + 𝑍

Distributive rule
𝑋. (𝑌 + 𝑍) = 𝑋. 𝑌 + 𝑋. 𝑍
𝑿 + 𝒀. 𝒁 = (𝑿 + 𝒀). (𝑿 + 𝒁)

Other Theorems

Absorption
𝑋. (𝑋 + 𝑌) = 𝑋. 𝑋 + 𝑋. 𝑌 = 𝑋 + 𝑋. 𝑌 = 𝑋. (1 + 𝑌) = 𝑋
𝑋 + 𝑋. 𝑌 = 𝑋. (1 + 𝑌) = 𝑋

Adjacency
𝑋. 𝑌 + 𝑋. 𝑌̅ = 𝑋
(𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋

Consensus

𝑋. 𝑌 + 𝑋̅𝑍 + 𝑌𝑍 = 𝑋𝑌 + 𝑋̅𝑍
(𝑋 + 𝑌)(𝑋̅ + 𝑍)(𝑌 + 𝑍) = (𝑋 + 𝑌)(𝑋̅ + 𝑍)
Corollary: (𝑋 + 𝑌)(𝑋̅ + 𝑍) = 𝑋̅𝑌 + 𝑋𝑍

DeMorgan
𝑋. 𝑌̅̅ ̅̅ ̅ = 𝑋̅ + 𝑌̅, 𝑋. 𝑌. 𝑍 …̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑋̅ + 𝑌̅ + 𝑍̅ + ⋯
𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅. 𝑌̅, 𝑋 + 𝑌 + 𝑍+. . .̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅. 𝑌̅. 𝑍̅ …

Simplification
𝑋. (𝑋̅ + 𝑌) = 𝑋. 𝑌
𝑋 + 𝑋̅𝑌 = 𝑋 + 𝑌

 A useful application of the theorems is on the simplification of Boolean functions which leads to the reduction of the amount

of logic gates:

 Example:

𝐹 = (𝐴 + 𝐵̅𝐶 + 𝐷 + 𝐸𝐹)(𝐴 + 𝐵̅𝐶 + 𝐷 + 𝐸𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅)
𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅), 𝑋 = 𝐴 + 𝐵̅𝐶, 𝑌 = 𝐷 + 𝐸𝐹

𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋
→ 𝐹 = 𝐴 + 𝐵̅𝐶

 Example:

𝐹 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅)𝑍 + 𝑋𝑌̅𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹 = 𝑌̅𝑍(𝑋 + 𝑋̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

→ 𝐹 = 𝑌̅𝑍̅̅ ̅̅ = 𝑌 + 𝑍̅

 Example:

𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋𝑋 + 𝑋𝑌̅ + 𝑌𝑋 + 𝑌𝑌̅ = 𝑋 + 𝑋(𝑌̅ + 𝑌) = 𝑋 + 𝑋 = 𝑋

X

Y
F  X F

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2016

3 Instructor: Daniel Llamocca

 Example:

𝐹 = 𝑥1𝑥2 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥1𝑥2̅̅ ̅

𝐹 = 𝑥1𝑥2 + 𝑥1̅̅̅(𝑥2 + 𝑥2̅̅ ̅) = 𝑥1𝑥2 + 𝑥1̅̅̅
𝐹 = 𝑥1̅̅̅ + 𝑥1𝑥2 = (𝑥1̅̅̅ + 𝑥1)(𝑥1̅̅̅ + 𝑥2)

→ 𝐹 = 𝑥1̅̅̅ + 𝑥2

DERIVING BOOLEAN FUNCTIONS FROM TRUTH TABLES:

Using 1s:

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

𝐹 = 𝐴̅𝐵𝐶̅ + 𝐴𝐵̅𝐶̅ + 𝐴𝐵𝐶

Using 0s:

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

𝐹 = (𝐴 + 𝐵 + 𝐶)(𝐴̅ + 𝐵 + 𝐶̅)

2-input XOR and XNOR gates

XOR (Exclusive OR):

𝐹 = 𝑋̅𝑌 + 𝑋𝑌̅ = 𝑋𝑌

XNOR:

A B F

0 0 1

0 1 0

1 0 0

1 1 1

𝐹 = 𝑋𝑌 + 𝑋̅𝑌̅ = 𝑋𝑌̅̅ ̅̅ ̅̅

A B F

0 0 0

0 1 1

1 0 1

1 1 0

A

B

C

F

A

B

C
F

X

Y
F F

X

Y

X

Y
F  FX

Y

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2016

4 Instructor: Daniel Llamocca

SUM OF PRODUCTS (SOP) AND PRODUCT OF SUMS (POS) USING MINTERMS AND MAXTERMS:

MINTERMS and MAXTERMS (3 variable function)

 𝒙𝟏 𝒙𝟐 𝒙𝟑 Minterms Maxterms

0 0 0 0 𝑚0 = 𝑥1̅̅ ̅ 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑀0 = 𝑥1 + 𝑥2 + 𝑥3

1 0 0 1 𝑚1 = 𝑥1̅̅ ̅ 𝑥2̅̅ ̅𝑥3 𝑀1 = 𝑥1 + 𝑥2 + 𝑥3̅̅ ̅

2 0 1 0 𝑚2 = 𝑥1̅̅ ̅ 𝑥2𝑥3̅̅ ̅ 𝑀2 = 𝑥1 + 𝑥2̅̅ ̅ + 𝑥3

3 0 1 1 𝑚3 = 𝑥1̅̅ ̅ 𝑥2𝑥3 𝑀3 = 𝑥1 + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅

4 1 0 0 𝑚4 = 𝑥1𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑀4 = 𝑥1̅̅ ̅ + 𝑥2 + 𝑥3

5 1 0 1 𝑚5 = 𝑥1𝑥2̅̅ ̅𝑥3 𝑀5 = 𝑥1̅̅ ̅ + 𝑥2 + 𝑥3̅̅ ̅

6 1 1 0 𝑚6 = 𝑥1𝑥2𝑥3̅̅ ̅ 𝑀6 = 𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3

7 1 1 1 𝑚7 = 𝑥1𝑥2𝑥3 𝑀7 = 𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅

 For a function with 𝑛 variables, there are 2𝑛 minterms (or 2𝑛 maxterms) from 𝑚0 to 𝑚2𝑛−1 (or from 𝑀0 to 𝑀2𝑛−1)

 Note that: 𝑚𝑖̅̅̅̅ = 𝑀𝑖.

 A function can be expressed as a sum of minterms or as a product of maxterms:

 A minterm can be 1 or 0. When the minterm is 1, the minterm is a term of the function.
 A maxterm can be 1 or 0. When the maxterm is 0, the maxterm is a term of the function.

 A sum of products (SOP) that include only minterms or a product of sums (POS) that contain only maxterms are called

Canonical Forms.
 If a SOP includes terms that are not minterms (or a POS includes terms that are not maxterms), they are called non-

canonical forms. For example:
 𝐹(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 + 𝑥1̅̅̅ 𝑥2̅̅ ̅

 𝐹(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2 + 𝑥3)(𝑥1̅̅̅ + 𝑥2̅̅ ̅)

 𝐹(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2̅̅ ̅𝑥3 + 𝑥1̅̅̅𝑥2𝑥3̅̅ ̅ + (𝑥1̅̅̅ + 𝑥2 + 𝑥3)

Example:

X Y Z F Sum of Products

0 0 0 0 𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅ + 𝑋𝑌̅𝑍 + 𝑋𝑌𝑍̅
𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚4, 𝑚5, 𝑚6).

𝐹(𝑋, 𝑌, 𝑍) = ∑ 𝑚(1,4,5,6) Also: 𝐹̅(𝑋, 𝑌, 𝑍) = ∑ 𝑚(0,2,3,7)

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1 Product of Sums

1 0 1 1 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌̅ + 𝑍)(𝑋 + 𝑌̅ + 𝑍̅)(𝑋̅ + 𝑌̅ + 𝑍̅)

𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀0, 𝑀2, 𝑀3, 𝑀7).

𝐹(𝑋, 𝑌, 𝑍) = ∏ 𝑀(0,2,3,7) Also: 𝐹̅(𝑋, 𝑌, 𝑍) = ∏ 𝑀(1,4,5,6)

1 1 0 1

1 1 1 0

 Note how 𝐹(𝑋, 𝑌, 𝑍) = ∑ 𝑚(1,4,5,6) = ∏ 𝑀(0,2,3,7).

TIMING DIAGRAMS

A

B
F

C

A

F

B

C

G

G

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2016

5 Instructor: Daniel Llamocca

XILINX FPGA IMPLEMENTATION - DESIGN FLOW

 Design Entry: Here, the circuit is specified via a Hardware Description Language (HDL), Schematic, or a waveform. The

process of verification of the HDL syntax of schematic connections is called Synthesis.
 Behavioral Simulation: This is a crucial step. Your Design Entry might be 'error-free' syntax-wise, however it might not

work as expected. Here, we provide time-varying stimuli to the inputs of a logic circuit and verify that the outputs are correct.
When the stimuli is written in HDL, it is called a 'test-bench'. This process is very similar to using a signal generator to create
the inputs, and using a scope to visualize the outputs over time.

 Physical Mapping: Here we specify which inputs and outputs map to the specific components of the FPGA we selected
and the Printed Circuit Board (PCB) that houses the FPGA. In Xilinx ISE, this is done via a file called Constraints File (.ucf).

 Timing Simulation: Behavioral Simulation only simulates the circuit 'logically', i.e., it does not take into account analog
and electrical effects. Timing simulation does consider the delay that exist between inputs and outputs, and therefore it is
very useful to determine glitches, hazards, etc.

 Implementation: Here, we "program" the FPGA. In this step, we grab a configuration file (called 'bitstream') and then

download it onto the FPGA.

PRACTICE EXERCISES
 Simplify the following functions:

 𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅ + 𝑋𝑌̅𝑍 + 𝑋𝑌𝑍̅
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6)
 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀3, 𝑀4, 𝑀7)

 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + 𝑍̅)
 𝐹 = (𝐴̅𝐵 + 𝐶 + 𝐷)(𝐴̅𝐵 + 𝐷)
 𝐹 = 𝐴(𝐶 + 𝐷̅𝐵) + 𝐴̅

 Provide the Boolean functions and sketch the logic circuit. Use the two representations: i) Sum of Products, ii) Product of

Sums. Also, provide the minterms and maxterms representations.
A B C F1 F2 F3 F4 F5 F6 F7

0 0 0 0 1 0 1 0 1 0

0 0 1 1 0 1 1 1 0 0

0 1 0 0 0 1 1 0 1 1

0 1 1 1 0 1 1 1 1 1

1 0 0 1 0 1 0 0 1 0

1 0 1 0 1 0 0 1 0 0

1 1 0 1 1 0 0 0 1 1

1 1 1 1 1 1 0 1 0 1

 Obtain the logic function (and minimize if possible) of the following circuits:

 Draw the timing diagram of the following circuit:

 Design a circuit that verifies the logical operation of

the OR gate. f = '1' (LED ON) if the OR gate works

properly. Assumption: when the OR gate is not
working, it is generating 1's instead of 0's and vice
versa. Tip: First, generate the truth table.

 Security combination: We have a lock that only opens when we set eight (8) switches

as in the figure. Each switch represents a Boolean variable. Get the function that opens
the lock (a logical '1' is generated) when the switches are configured as in the figure.
Here, an open lock is represented by an LED that is ON.

OFF (0)

ON (1)

f

a

b

f

a

b

Y

C

B

A

Y

C

B

A

a

b

f
x

?

